медицинский каталог




Медико-биологическая статистика

Автор С.Гланц

центральной предельной теоремой. Эта теорема гласит следующее. • Выборочные средние имеют приближенно нормальное распределение независимо от распределения исходной совокупности, из которой были извлечены выборки.

• Среднее значение всех возможных выборочных средних равно среднему исходной совокупности.

• Стандартное отклонение всех возможных средних по выборкам данного объема, называемое стандартной ошибкой среднего, зависит как от стандартного отклонения совокупности, так и от объема выборки.

На рис. 2.8 показано, как связаны между собой выборочное среднее, выборочное стандартное отклонение и стандартная ошибка среднего и как они изменяются в зависимости от объема выборки*. По мере того как мы увеличиваем объем выборки, выборочное среднее X и стандартное отклонение s дают все более точные оценки среднего ц и стандартного отклонения а по совокупности. Увеличение точности оценки среднего отражается в уменьшении стандартной ошибки среднего а^. Набрав достаточное количество марсиан, можно сделать стандартную ошибку среднего сколь угодно малой. В отличие от стандартного отклонения стандартная ошибка среднего ничего не говорит о разбросе данных — она лишь показывает точность выборочной оценки среднего.

* Рис. 2.8 получился следующим образом. Из совокупности марсиан (рис. 2.1) взяли наугад двух марсиан. По этой выборке вычислили X, SHSX- Потом опять же наугад выбрали еще одного марсианина и, добавив его к выборке, снова рассчитали эти показатели. Добавляя каждый раз по одному случайно выбранному марсианину, объем выборки довели до 100. Если бы мы повторили эксперимент, очередность извлечения марсиан была бы иной и рисунок выглядел бы немного иначе.

Хотя разница между стандартным отклонением и стандартной ошибкой среднего совершенно очевидна, их часто путают. Большинство исследователей приводят в публикациях значение стандартной ошибки среднего, которая заведомо меньше стандартного отклонения. Авторам кажется, что в таком виде их данные внушают больше доверия. Может быть, так оно и есть, однако беда в том, что стандартная ошибка среднего измеряет именно точность оценки среднего, но никак не разброс данных, который и интересен читателю. Мораль состоит в том, что, описывая совокупность, всегда нужно приводить значение стандартного отклонения.

4644О Выборочное среднее X

? Выборочное стандартное отклонение s

А Стандартная ошибка среднего

0 3 10 20 30 40 50 60 70 80 90 ?00

Объем выборки, п

Рис. 2.8. С увеличением объема выборки возрастает точность оценки параметров распределения. Выборочное среднее X стремится к среднему в совокупности р,, выборочное стандартное отклонение s стремится к стандартному отклонению в совокупности а, а стандартная ошибка среднего стремится к нулю.

Рассмотрим пример, позволяющий почувствовать различие между стандартным отклонением и стандартной ошибкой среднего, а также уяснить, почему не следует пренебрегать стандартным отклонением. Положим, исследователь, обследовав выборку из 20 человек, пишет в статье, что средний сердечный выброс составлял 5,0 л/мин со стандартным отклонением 1 л/мин. Мы знаем, что 95% нормально распределенной совокупности попадает в интервал среднее плюс-минус два стандартных отклоне

ния. Тем самым, из статьи видно, что почти у всех обследованных сердечный индекс составил от 3 до 7 л/мин. Такие сведения весьма полезны, их легко использовать во врачебной практике.

Увы, приведенный пример далек от реальности. Скорее автор укажет не стандартное отклонение, а стандартную ошибку среднего. Тогда из статьи вы узнаете, что «сердечный выброс составил 5,0 + 0,22 л/мин». И если бы мы спутали стандартную ошибку среднего со стандартным отклонением, то пребывали бы в уверенности, что 95% совокупности заключено в интервал от 4,56 до 5,44 л/мин. На самом деле в этом интервале (с вероятностью 95%) находится среднее значение сердечного выброса. (В гл. 7 мы поговорим о доверительных интервалах более подробно.) Впрочем, стандартное отклонение можно рассчитать самому — для этого нужно умножить стандартную ошибку среднего на квадратный корень из объема выборки (численности группы). Правда, для этого нужно знать, что же именно приводит автор — стандартное отклонение или стандартную ошибку среднего.

ВЫВОДЫ

Когда совокупность подчиняется нормальному распределению, она исчерпывающе описывается параметрами распределения — средним и стандартным отклонением. Когда же распределение сильно отличается от нормального, более информативны медиана и процентили.

Так как наблюдать всю совокупность удается редко, мы оцениваем параметры распределения по выборке, случайным образом извлеченной из совокупности. Стандартная ошибка среднего служит мерой точности, с которой выборочное среднее является оценкой среднего по совокупности.

Эти величины полезны не только для описания совокупности или выборки. Их можно также использовать для проверки статистических гипотез, в частности о различиях между группами.

Этому и будет посвящена следующая глава.

ЗАДАЧИ

2.1. Найдите среднее, стандартное отклонение, медиану, 25-й и 75-й процентили для следующей выборки: 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 3; 3; 3; 3; 4; 4; 5; 5; 5; 5; 6; 7; 9; 10; 11. Можно ли считать, что выборка извлечена из совокупности с нормальным распределением? Обоснуйте свой ответ. (Приведенные числа — клинические оценки тяжести серповидно клеточной анемии. Подробный анализ этого исследования см. в задаче 8.9. Данные заимствованы из работы: R. Hebbel et al. Erythrocyte adherence to endothelium in sickle-cell anemia: a possible determinant of disease severity. N. Engl. J. Med., 302, 992-995, 1980.)

2.2. Найдите среднее, стандартное отклонение, медиану, 25-й и 75-й процентили для следующих данных: 289; 203; 359; 243; 232; 210; 251; 246; 224; 239; 220; 211. Можно ли считать, что выборка извлечена из совокупности с нормальным распределением? Обоснуйте свой ответ. (Эти числа — продолжительность (в секундах) физической нагрузки до развития приступа стенокардии у 12 человек с ишемической болезнью сердца. Данные заимствованы из работы: W. Aronow. Effect of nonnicotine ciga-retts and carbon monoxide on angina. Circulation, 61:262—265, 1979. Более подробно эта работа описана в задаче 9.5.)

2.3. Найдите среднее, стандартное отклонение, медиану, 25-й и 75-й процентили для следующих данных: 1,2; 1,4; 1,6; 1,7; 1,7; 1,8; 2,2; 2,3; 2,4; 6,4; 19,0; 23,6. Можно ли считать, что это — выборка из совокупности с нормальным распределением? Обоснуйте свой ответ. (Приведены результаты оценки проницаемости сосудов сетчатки из работы: G. A. Fishman et al. Blood-retinal barrier function in patients with cone or cone-rod dystrophy. Arch. Ophthalmol., 104:545-548, 1986.)

2.4. Опишите распределение числа очков, выпадающих при бросании игральной кости. Найдите среднее число очков.

2.5. Бросьте одновременно две игральные кости, посмотрите, сколько очков выпало на каждой из них, и рассчитайте среднее. Повторите опыт 20 раз и постройте распределение средних, найденных после каждого броска. Что это за распределение? Вычислите его среднее и стандартное отклонение. Что они характеризуют?

2.6. Р. Флетчер и С. Флетчер (R. Fletcher, S. Fletcher. Clinical research in general medical journals: a 30-year perspective. N. Engl. J. Med., 301:180—183, 1979) изучили библиографические характеристики 612 случайно выбранных статей, опубликованных в журналах Journal of American Medical Association, New England Journal of Medicine и Lancet с 1946 г. Одним из показателей было число авторов статьи. Было установлено следующее:

Год Число обследованных статей Среднее число авторов Стандартное отклонение

1946 151 2,0 1,4

1956 149 2,3 1,6

1966 157 2,8 1,2

1976 155 4,9 7,3

Нарисуйте график среднего числа авторов по годам. Может ли распределение статей по числу авторов быть нормальным? Почему?

Глава 3

Сравнение нескольких групп: дисперсионный анализ

Статистические методы используют для описания данных и для оценки статистической значимости результатов опыта. В предыдущей главе мы занимались описанием данных. Мы ввели понятия среднего, стандартного отклонения, медианы и процентилей. Мы узнали, как оценивать эти показатели по выборке. Мы разобрались, как определить, насколько точна выборочная оценка среднего. Перейдем теперь к методам оценки статистической значимости различий (их называют критериями значимости, или просто критериями*). Методов этих существует множество, но все они построены по одному принципу. Сначала мы формулируем нулевую гипотезу, то есть предполагаем, что исследуемые факторы не оказывают никакого влияния на исследуемую величину и полученные различия случайны. Затем мы определяем, какова вероятность получить наблюдаемые (или более сильные) различия при условии справедливости нулевой гипотезы. Если

Критерием называют и сам метод, и ту величину, которая получается в результате его применения.

эта вероятность мала*, то мы отвергаем нулевую гипотезу и заключаем, что результаты эксперимента статистически значимы. Это, разумеется, еще не означает, что мы доказали действие именно изучаемых факторов (это вопрос прежде всего планирования эксперимента), но, во всяком случае, маловероятно, что результат обусловлен случайностью.

Дисперсионный анализ был разработан в 20-х годах нашего столетия английским математиком и генетиком Рональдом Фишером. На дисперсионном анализе основан широкий класс критериев значимости, со многими из которых мы познакомимся в этой книге. Сейчас мы постараемся понять общий принцип этого метода.

СЛУЧАЙНЫЕ ВЫБОРКИ ИЗ НОРМАЛЬНО РАСПРЕДЕЛЕННОЙ СОВОКУПНОСТИ

Однажды в небольшом городке (200 жителей) ученые исследовали влияние диеты на сердечный выброс. Случайным образом отобрали 28 человек, каждый из которых согласился участвовать в исследовании. После этого они, опять-таки случайным образом, были разделены на 4 группы по 7 человек в каждой. Члены первой (контрольной) группы продолжали питаться как обычно, члены второй

страница 6
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Скачать книгу "Медико-биологическая статистика" (7.41Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]


Химический каталог Rambler's Top100

Copyright © 2009
(20.01.2018)