медицинский каталог




Медико-биологическая статистика

Автор С.Гланц

аз. Каждый раз мы заново набирали по четыре группы и каждый раз вычисляли F. На рис. 3.6А приведены результаты этого многократного эксперимента. Значения F округлены до одного знака после запятой и изображены кружками. Два черных кружка соответствуют данным с рис. 3.2 и 3.5. Как и следовало ожидать, большинство значений F близко к единице (попадая в интервал от 0 до 2); только в 10 из 200 опытов (то есть в 5% случаев) мы получили значение F, большее или равное 3. (На рис. 3.6Б эти 10 значений показаны черными кружками.) Значит, отвергая нулевую гипотезу при F > 3, мы будем ошибаться в 5% случаев. Если такой процент ошибок не чрезмерен, то будем считать «большими» те значения F, которые больше или равны 3. Значение критерия, начиная с которого мы отвергаем нулевую гипотезу, называется критическим значением.

Вероятность ошибочно отвергнуть верную нулевую гипотезу, то есть найти различия там, где их нет, обозначается Р. Как правило, считают достаточным, чтобы эта вероятность не превышала

5%. (Максимальная приемлемая вероятность ошибочно отвергнуть нулевую гипотезу называется уровнем значимости и обозначается а.) Почему бы не повысить критическое значение F, тем самым уменьшая эту вероятность? Однако в этом случае возрастет риск ошибочно принять неверную нулевую гипотезу (то есть не найти различий там, где они есть). Подробнее мы поговорим об этом в гл. 6.

Итак, мы решили, приняв допустимой 5% вероятность ошибки, отвергать нулевую гипотезу при F > 3. Однако критическое значение F следовало бы выбрать на основе не 200, а всех 1042 экспериментов, которые можно провести на совокупности из 200 человек. Предположим, что нам удалось провести все эти эксперименты. По их результатам мы вычислили соответствующие значения F и нанесли их на график (рис. 3.6В). Здесь каждое значение F изображено «песчинкой». На долю темных песчинок в правой части горки приходится 5% всех значений. Картина, в общем, похожа на ту, что мы видели рис. 3.6Б. На практике совокупности гораздо больше, чем население нашего городка, а число возможных значений F несравненно больше 1042. Если мысленно увеличить объем совокупности до бесконечности, то песчинки сольются и получится гладкая кривая, изображенная на рис. 3.6Г. Площади под кривой аналогичны долям от общего числа кружков или песчинок на рис. 3.6А, Б и В. Заштрихованная область на рис. 3.6Г составляет 5% всей площади под кривой. Эта область начинается от F = 3,01; это и есть критическое значение F.

В нашем примере число групп равнялось 4, в каждую группу входило 7 человек. Если бы число групп или число членов в каждой группе было другим, кривая пошла бы по-другому и критическое значение F тоже было бы другим. Вообще, критическое значение F однозначно определяется уровнем значимости (обычно 0,05 или 0,01) и еще двумя параметрами, которые называются внутригрупповым и межгрупповым числом степеней свободы и обозначаются греческой буквой v («ню»). Оставим в стороне вопрос о происхождении этих названий и просто укажем, как их определять. Межгрупповое число степеней свободы — это число групп минус единица: v меж = т -1. Внутригрупповое число степеней свободы — это произведение числа групп на численность

Значение F

Рис. 3.6. А. Четыре случайные выборки по 7 человек в каждой извлекли из той же совокупности (население городка) 200 раз. Каждый раз рассчитывали значение F и наносили его на график. Результаты для выборок с рис. 3.2 и 3.5 помечены черным. Б. Десять наибольших значений помечены черным. Область черных кружков начинается со значения F, равного 3,0.

каждой из групп минус единица: vBHy = т(п -1). В примере с исследованием диеты межгрупповое число степеней свободы равно 4 -1 = 3, а внутригрупповое 4 (7 -1) = 24. Вычислить критическое значение jF довольно сложно, поэтому пользуются таблицами критических значений F для разных a, v меж и vBHy (табл. 3.1).

Математическая модель, на которой основано вычисление критических значений F, предполагает следующее.

• Каждая выборка независима от остальных выборок.

• Каждая выборка случайным образом извлечена из исследуемой совокупности.

I I 1 1

1,0 2,0 3,0 4,0

Значение F

Рис. 3.6 (продолжение). В. Из той же совокупности извлекли все возможные наборы из 4 выборок по 7 человек в каждой и построили распределение F. Отдельные значения слились, превратившись в песчинки. 5% песчинок с самыми большими значениями F помечены черным. Г. Такое распределение F получится, если извлекать выборки из бесконечной совокупности. Пяти процентам самых высоких значений F соответствует заштрихованная область (ее площадь составляет 5% от общей площади под кривой). «Большие» значения F начинаются там, где начинается эта область, то есть с F = 3,01.

• Совокупность нормально распределена.

• Дисперсии всех выборок равны.

При существенном нарушении хотя бы одного из этих условий нельзя пользоваться ни таблицей 3.1, ни вообще дисперсионным анализом.

В рассмотренном нами эксперименте исследовалась зависимость только от одного фактора — диеты. Дисперсионный ана умеж

G. W. Snedecor, W. G. Cochran. Statistical methods. Iowa State University Press, Ames, 1978.

лиз, в котором проверяется влияние одного фактора, называется однофакторным. При изучении влияния более чем одного фактора используют многофакторный дисперсионный анализ (в этой книге не рассматривается).

ТРИ ПРИМЕРА

Сейчас мы уже можем оценивать статистическую значимость реальных данных. Покажем это на трех примерах, заимствованных из медицинской литературы. Оговорюсь, что при изложении этих примеров мне пришлось несколько отклониться от первоисточников. Тому есть две причины. Во-первых, в медицинских публикациях обычно приводят не сами данные, а средние величины и прочие обобщенные показатели. Нередко дело обстоит и того хуже. Минуя все промежуточные этапы, авторы сообщают, что «Р < 0,05». Поэтому «данные из литературных источников» по большей части являются плодом моих собственных догадок, какими могли бы быть исходные данные. Во-вторых, дисперсионный анализ в том виде, как мы его изложили, требует, чтобы численность всех групп была одинаковой. Поэтому мне пришлось видоизменять приводимые в работах данные так, чтобы соблюсти это требование. Впоследствии мы обобщим наши статистические методы, и их можно будет применять и при неравной численности групп.

Позволяет ли правильное лечение сократить срок госпитализации?

* D. Е. Knapp, D. A. Knapp, М. К. Speedie, D. М. Yaeger, С. L. Baker. Relationship of inappropriate drug prescribing to increased length of hospital stay. Am. J. Hosp. Pharm., 36:1334-1337, 1979.

Стоимость пребывания в больнице — самая весомая статья расходов на здравоохранение. Сокращение госпитализации без снижения качества лечения дало бы значительный экономический эффект. Способствует ли соблюдение официальных схем лечения сокращению госпитализации? Чтобы ответить на этот вопрос, Кнапп и соавт.* изучили истории болезни лиц, поступивших в бесплатную больницу с острым пиелонефритом. Острый пиелонефрит был выбран как заболевание, имеющее четко очерченную клиническую картину и столь же четко регламентированные методы лечения.

Эта работа — пример обсервационного исследования. В отличие от экспериментального исследования, где исследователь сам формирует группы и сам оказывает то или иное воздействие, в обсервационном исследовании он может лишь наблюдать течение процесса. С другой стороны, это исследование — ретроспективное, поскольку имеет дело с данными, полученными в прошлом (в отличие от проспективного).

В обсервационном исследовании мы никогда не можем гарантировать, что группы различаются только тем признаком, по которому они были сформированы. Этот неустранимый недостаток исследований такого рода. Известно, например, что курильщики чаще болеют раком легких. Это считается доказательством того, что курение вызывает рак легких. Однако возможна и другая точка зрения: у людей с генетической предрасположенностью к раку легких существует и генетическая предрасположенность к курению. В обсервационном исследовании отвергнуть такое объяснение невозможно.

Ретроспективное исследование, естественно, всегда является обсервационным; разделяя недостатки последнего, оно обладает и рядом собственных. Исследователь использует информацию, собранную для других целей, — естественно, часть ее приходится реконструировать; еще часть неизбежно теряется. Меняются методы исследования, диагностические критерии и сами представления о нозологических единицах; наконец, истории болезни ведутся порой небрежно. Кроме того, имея весь материал в руках, здесь особенно трудно удержаться от непреднамеренной подтасовки.

Тем не менее ретроспективные исследования проводились и будут проводиться. Они недороги и позволяют получить большой объем информации в короткий срок. Последнее особенно важно в случае редкого заболевания: при проспективном исследовании на сбор данных уйдут годы. В примере, который мы разбираем, проспективное исследование вообще невозможно: нельзя же, в самом деле, одну группу больных лечить правильно, а другую неправильно.

Чтобы избежать ловушек обсервационного (и особенно ретроспективного) исследования, чрезвычайно важно в явном виде задать критерии, по которым больных относили к той или иной группе. Самому исследователю это поможет избежать невольного самообмана, читателю работы это даст возможность судить, насколько результаты исследования приложимы к его больным.

Кнапп и соавт. сформулировали следующие критерии включения в исследование.

1. Диагноз при выписке — острый пиелонефрит.

2. При поступлении — боли в пояснице, температура выше 37,8°С.

3. Бактериурия более 100 ООО колоний/мл, определена чувствительность к антибиотикам.

4. Возраст от 18 до 44 лет (больных старше 44 лет не включали в связи с высокой вероятностью сопутствующих заболеваний, ограничивающих выбор терапии).

5. Отсутствие почечной, печеночной недостаточности, а также заболеваний, требующих хирургического лечения (эти состояния тоже ограничивают выбор терапии).

6. Больной был выписан в связи с улучше

страница 8
< К СПИСКУ КНИГ > 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

Скачать книгу "Медико-биологическая статистика" (7.41Mb)


[каталог]  [статьи]  [доска объявлений]  [обратная связь]


Химический каталог Rambler's Top100

Copyright © 2009
(27.04.2018)